Learning Causal AMP Chain Graphs
نویسنده
چکیده
Andersson-Madigan-Perlman chain graphs were originally introduced to represent independence models. They have recently been shown to be suitable for representing causal models with additive noise. In this paper, we present an algorithm for learning causal chain graphs. The algorithm builds on the ideas by Hoyer et al. (2009), i.e. it exploits the nonlinearities in the data to identify the direction of the causal relationships. We also report experimental results on real-world data.
منابع مشابه
Learning Marginal AMP Chain Graphs under Faithfulness
Marginal AMP chain graphs are a recently introduced family of models that is based on graphs that may have undirected, directed and bidirected edges. They unify and generalize the AMP and the multivariate regression interpretations of chain graphs. In this paper, we present a constraint based algorithm for learning a marginal AMP chain graph from a probability distribution which is faithful to ...
متن کاملLearning AMP Chain Graphs under Faithfulness
This paper deals with chain graphs under the alternative Andersson-Madigan-Perlman (AMP) interpretation. In particular, we present a constraint based algorithm for learning an AMP chain graph a given probability distribution is faithful to. We also show that the extension of Meek’s conjecture to AMP chain graphs does not hold, which compromises the development of efficient and correct score+sea...
متن کاملLearning marginal AMP chain graphs under faithfulness revisited
Marginal AMP chain graphs are a recently introduced family of models that is based on graphs that may have undirected, directed and bidirected edges. They unify and generalize the AMP and the multivariate regression interpretations of chain graphs. In this paper, we present a constraint based algorithm for learning a marginal AMP chain graph from a probability distribution which is faithful to ...
متن کاملLearning AMP Chain Graphs and some Marginal Models Thereof under Faithfulness
This paper deals with chain graphs under the Andersson-Madigan-Perlman (AMP) interpretation. In particular, we present a constraint based algorithm for learning an AMP chain graph a given probability distribution is faithful to. Moreover, we show that the extension of Meek’s conjecture to AMP chain graphs does not hold, which compromises the development of efficient and correct score+search lea...
متن کاملIdentification of Strong Edges in AMP Chain Graphs
The essential graph is a distinguished member of a Markov equivalence class of AMP chain graphs. However, the directed edges in the essential graph are not necessarily strong or invariant, i.e. they may not be shared by every member of the equivalence class. Likewise for the undirected edges. In this paper, we develop a procedure for identifying which edges in an essential graph are strong. We ...
متن کامل